

Xylella fastidiosa

Avancement de la recherche

Anses Laboratoire de la santé des végétaux

Méthode officielle MA039 v3

Méthode officielle développée, évaluée et validée en 2015 associant:

- Bonne sensibilité
- Automatisation
- Méthode robuste et facile à mettre en œuvre par les laboratoires agréés

Ayant permis de détecter *X. fastidiosa* sur plus de 40 plantes hôtes en Corse et en PACA

Cependant sur <u>olivier et chêne vert</u>, sensibilité plus faible observée lors de la validation et d'essais interlaboratoires

- → Depuis 2015: travaux visant à améliorer la sensibilité
- → Depuis 2017, mise en œuvre au LSV d'une double analyse en confirmation pour ces espèces:
 méthodo efficielle + extraction CTAP

méthode officielle + extraction CTAB

→ NB: Echantillons oliviers italiens détectés positifs avec la méthode officielle

Amélioration de la méthode officielle

Amélioration de la méthode dans le cadre d'un travail collaboratif avec l'INRA d'Angers Emersys :

- Sonication (dislocation des biofilms)
- Extraction CTAB (protocole OEPP PM7/24)
- Modification des paramètres d'amplification Harper

- Validation en cours de la méthode optimisée
- Projet de publication de la version 4 de la MA039 en fin d'année, formation des laboratoires agréés, délégation

Amélioration de la méthode officielle

En attente de la révision de la méthode et de sa délégation, en accord avec la SDQPV:

→ Depuis septembre 2018 Analyses de 1ère intention sur olivier et chêne vert réalisées au LSV, et non plus par les laboratoires agréés

Double analyse:

- Méthode officielle
- Méthode CTAB optimisée
- → A ce jour, pas de cas positif sur olivier

Identification des souches de Xf

MultiLocus Sequence Typing (MLST) sur macérat végétal

→ Evaluation / validation de la méthode

- Extraction d'ADN avec le kit QuickPick Plant DNA
- PCR conventionnelle Yuan et al., 2010 7 gènes de ménage ciblés
- Séquençage des amplifiats
- Analyse bio-informatique des résultats de séquençage par comparaison aux bases de données PubMLST
- Détermination du Sequence-Type (ST) et de la sous-espèce

3 matrices évaluées:

Immortelle d'Italie, polygale, ciste de Montpellier

Identification des souches de Xf par MLST

Evaluation / validation de la MLST sur macérat végétal

Inclusivité (15 souches Xylella): 100%

Exclusivité (40 souches): 100%

Spécificité: 100% (pour les 7 gènes de ménage)

Limite de détection de la PCR Yuan testée pour chacun des 7 gènes

Espèce végétale	Dilution extrait ADN	Limite de détection (probabilité de détection 100%)
Immortelle d'Italie	Extrait pur	Non détecté
	Dilué au 1/10ème	10⁵ bact / mL de macérat
Ciste de Montpellier	Extrait pur	104 bact / mL de macérat
	Dilué au 1/10ème	10⁵ bact / mL de macérat
Polygala myrtifolia	Extrait pur	10⁴ bact / mL de macérat
	Dilué au 1/10ème	10⁵ bac / mL de macérat

<u>Conclusion</u>: la sensibilité de la PCR et donc sa limite de détection est variable selon les espèces végétales La dilution peut apporter un gain de sensibilité, <u>amélioration en cours</u>

Méthode développée / validée par l'Anses sur *Philaenus spumarius*

Un insecte (1 tête)

- Broyage dans 200 µl d'eau deminéralisée stérile
- 10 billes métalliques (3 mm)
- Agitation à haute fréquence (RETSCH MM400 durant 2 min à
- 30 Hertz)

Extraction d'ADN automatisée Kit QuickPick™ Plant DNA (Bio-Nobile) Automate KingFisher™

Amplification par PCR en temps réel duplex

- Harper et al., 2010
- loos et al., 2009 (contrôle interne)

Critères de performance

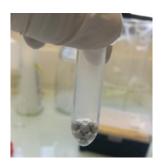
Sensibilité	100%
Specificité	100%
Repetabilité	100%
Limite de détection (détection à 100%)	> 10 ³ bact/tête

Essai interlaboratoire de validation (EILV) organisé par l'Anses - Projet Euphresco en 2017-2018

20 laboratoires européens participants

Insectes artificiellement contaminés

- ➤ 4 PCR: Harper et al., 2010; duplex Harper-loos; Francis et al., 2006; LAMP Harper et al., 2010 modifiée Yaseen et al., 2015


Conclusion:

Performances similaires entre les 2 méthodes d'extraction et entre les différentes PCR sauf pour PCR Francis et al., 2006 dont la sensibilité apparait moindre

Comparaison de 2 méthodes d'extraction de l'ADN sur *Philaenus spumarius*

- Protocole interne LSV Protocol broyage Kit QuickPick Plant DNA
- Protocole Cruaud et al., 2018
 Kit tubes de broyage
 Protocole d'extraction développé
 par INRA CBGP Montpellier intégrant
 divers réactifs pour la levée d'inhibition
 Utilisation de billes magnétiques

Amplification: PCR en temps réel multiplex Harper et al., 2010 / loos et al., 2009

Nested PCR Cruaud et al. 2018 non évaluée

Comparaison de 2 méthodes d'extraction de l'ADN sur *Philaenus spumarius*

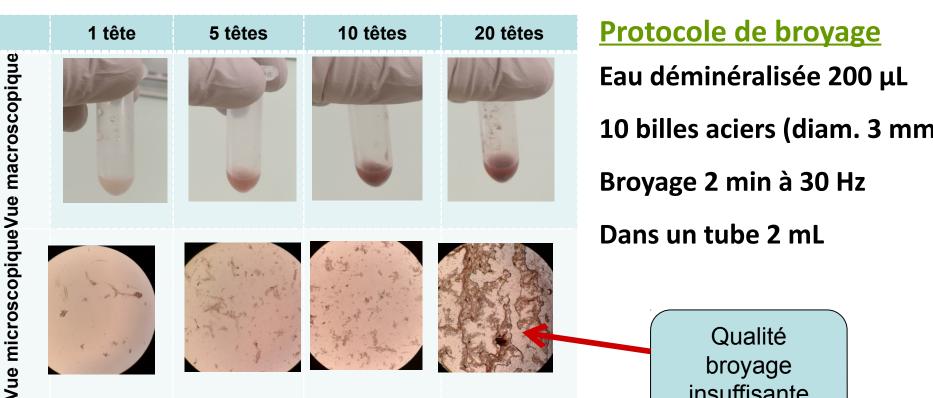
Résultats / Conclusion

Critères	Anses	Cruaud <i>et al</i> ., 2018
Sensibilité	81 %	52 %
Specificité	100 %	100 %
Répétabilité	91 %	84 %
Détection à 100 bact/tête	74 %	17 %
Détection à 1000 bact/tête	100 %	78 %

Les test décrits dans Cruaud *et al.*, 2018 (broyage et extraction d'ADN) n'ont pas permis d'améliorer les performances de la méthode retenue par l'Anses

Evaluation analyse d'échantillons composites

→ Analyse sur groupe d'insectes


Philaenus spumarius

Evaluation 5, 10, 15, 20 insectes

Broyage / Extraction ADN / Amplification PCR

Tests de broyage sur échantillons composites (Philaenus spumarius)

broyage insuffisante

Evaluation analyse sur échantillons composites

Résultats / conclusion :

- La limite de détection de la PCR en temps réel Harper et al., 2010 n'est pas affectée par le nombre de têtes (jusqu'à 15 têtes)
- ➢ Identification de la sous-espèce par MLST (PCR Yuan et al. 2010) sur groupe d'insectes en cours d'évaluation

Philaenus spumarius vs autres insectes

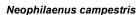
Essai sur *Neophileanus lineatus* (vecteur potentiel) avec le protocole interne LSV validé sur *P. spumarius*

Résultats: moindre sensibilité (présence d'inhibiteurs?) Travaux d'optimisation à poursuivre...

Analyses sur insectes collectés en Corse et en PACA

PACA (collecte 2017 sur foyers)

21 *P. spumarius* analysés 9,5% de positifs Souche *multiplex* ST7


3 Cicadella viridis 1 Neophilaenus campestris

→ Négatifs

Corse (collecte 2016 sur foyers)

1042 *P. spumarius* analysés env. 9% de positifs
Souches *multiplex* ST6/ST7

Cicadella viridis

NB: Vecteurs compétents identifiés en Italie:

Philaenus spumarius, Neophilaenus campestris, Philaenus italosignus

Thèse Enora Dupas (Anses / EmerSys)

PCR multiplex détection / identification

➤ Mise au point de sets d'amorces et de sondes permettant la détection et l'identification de la sous-espèce en une analyse unique

PCR digitale (ddPCR)

- PCR permettant la duplication de l'échantillon analysé en 15 000 à 20 000 sous-échantillons (micro gouttelettes) permettant en théorie de s'affranchir des composés inhibiteurs et de quantifier le nombre de cibles
- → Pas de réel apport par rapport à la PCR en temps réel
- → Intérêt pour la quantification bactérienne pour activités de méthodologie ou détermination de niveau de contamination

Analyses MLVA

Identifier les routes d'invasion et le nombre d'introductions à partir des isolats collectés

Travaux autres instituts et pays tiers UE

Projets européens Ponte et XF-Actors

- Sélection de cultivars d'olivier tolérants
- Identification de gènes de résistance sur olivier
- Vecteurs essais de transmission
- Vecteurs: études et enquêtes faunistiques
- Vecteurs: « confusions sexuelle » (signaux vibrationnels)
- Test du pouvoir pathogène (détermination des plantes hôtes)
- Evaluation d'espèces prédatrices des vecteurs

Araniellla cucurbitina

Travaux autres instituts et pays tiers UE

Projets européens Ponte et XF-Actors

- Microorganismes antagonistes (ex: Paraburkholderia phytofirmans PsJN)
- Imagerie hyperspectrale: détection précoce sur oliveraie par image aérienne
- Phagothérapie (virus bactériophages)
- Protocole consensuel européen OEPP PM7/24 version 3 publiée en juillet 2018, en cours de révision

Support financier

SUSTAINABLE FOOD SECURITY

H2020-SFS-2014-2 Sub call of: H2020-SFS-2014-2015

SFS-03a-2014: Native and alien pests in agriculture and forestry POnTE

(Pest Organisms Threatening Europe) cod. 635646

web: www.ponteproject.eu | mail: info@ponteproject.eu

Merci pour votre attention

